
Chained Negotiation for Distributed Notification Services

Richard Lawley Michael Luck Luc Moreau

School of Electronics and Computer Science
University of Southampton

{ral01r, mml, L.Moreau}@ecs.soton.ac.uk

Abstract

Distributed notification services allow consumers and publishers of notifications to interact
with different notification services. However, such a distributed infrastructure makes it difficult
to share notifications between consumers when consumers are allowed to specify Quality of
Service levels. In this paper, we present a chained negotiation engine, enabling distributed
notification services to support negotiation and to reuse existing subscriptions. We demonstrate
the benefit to the system as a whole by reducing load on service providers and enabling content
to be shared.

1 Introduction

Notification services(NSs) are messaging middle-
ware components providing asynchronous commu-
nications between services and/or users in a dis-
tributed environment. They are responsible for the
delivery of messages between publishers and sub-
scribers; publishers (such as information services)
provide information that is then filtered and deliv-
ered to subscribed consumers [7, 8, 12] based on a
specification of topic and delivery parameters.

Publishers and consumers of notifications may
have different and conflicting requirements in terms
of delivery parameters. For example, subscribers to
a service may wish to filter the notifications based
on a set of criteria, or specify minimum intervals
between notifications. These are essentially mea-
sures of Quality of Service (QoS), and different sub-
scribers may demand or request different levels of
QoS. As the publisher may not be able to meet these
requirements for reasons of policy or system load,
a mechanism is required to resolve the difference
between the preferences of the consumer and the
provider.

In previous work [14], we determined that a com-
petitive approach using negotiation would enable
differences between the requirements of publisher
and consumer to be resolved. A bi-lateral nego-
tiation model was presented enabling mutually ac-
ceptable values for notification parameters to be au-
tomatically determined. We demonstrated that, by
using this negotiation model to manage client de-
mands, the load on the service provider could be re-
duced, enabling more clients to use the same service.

The requirement to negotiate over QoS levels in a
distributed service-oriented computing environment
has also been recognised by the Grid community [1].

NSs can be distributed to address security and
scalability issues. Here, multiple instances of a
NS are hosted at different locations on the grid
[13]. Publishers and consumers interact with differ-
ent NSs; typically, they publish messages at or con-
sume them from the NS located at their institution.
Distributed NSs ensure that messages are routed be-
tween them to propagate notifications from publish-
ers to the relevant consumers. If multiple consumers
are subscribed to the same topic, the same notifica-
tions will be sent to all of them. When multiple con-
sumers at the same site are receiving the same noti-
fications, it becomes sensible to reuse the subscrip-
tions in order to reduce network traffic and poten-
tial delays. However, if each consumer is allowed to
specify different QoS parameters for a subscription,
it may become difficult to share notifications.

A key aspect of distributed NSs is that intermedi-
aries can exist between publishers and consumers in
the form of other NSs. In order to negotiate qual-
ity of service between a publisher and a consumer, a
more complex form of negotiation is required. Since
the publisher and consumer no longer communicate
directly, the negotiation has to take place through
intermediaries, or middlemen. These middlemen
pass on proposals or suggest existing commitments
that can be reused to satisfy the consumer’s require-
ments, which can impact on the negotiation outcome
for the consumer or the publisher.

To enable negotiation over QoS in the context of
a notification service and provide more efficient use

of notifications, we have designed an extended ne-
gotiation model to supportchained negotiation. In
this model, publishers and subscribers do not need
to know whether they are negotiating directly or
through a middleman — the interactions in which
they participate remain identical in both cases. Ne-
gotiations take place between negotiation compo-
nents built into publishers and consumers through a
number of middlemen. The publisher is a NS pub-
lishing notifications on a topic the consumer is in-
terested in. In situations in which the consumer is
connected to a different notification service, chained
negotiation is required to mediate the differing re-
quirements of the two.

In this paper, we discuss the design and prelimi-
nary evaluation of a negotiation engine implement-
ing chained negotiation. To demonstrate its effec-
tiveness we have designed a series of experiments
which aim to show that using a chained negotiation
system in conjunction with a distributed notification
service enables more consumers to be serviced by a
given set of notification services, and that this can
be done at the same time as reducing the load on
service providers. We have already shown that ne-
gotiation can reduce the load on a service provider
in a directly connected scenario — we aim to show
improved results using a distributed system.

2 Notification Services

Over recent years, there has been a significant in-
crease in the number of computers and other de-
vices that access and run remote services over a net-
work. Traditionally, this would have been accom-
plished with remote-procedure calls (RPC), where a
remote service is invoked by a client that issues the
requests and stays connected waiting for it to com-
plete. This has turned out to be an unsuitable model
as it has become a common requirement to be able
to issue requests, disconnect, and reconnect again
later to receive the outcome of the request. This is
needed when a permanent connection is not avail-
able, or where a job is long running or continuous
and it is not practical to stay connected while wait-
ing for results.

Various message-oriented middleware solutions
enable asynchronous, reliable communications and
are suitable for the role of handling remote requests.
Queuing products such as Microsoft Message Queue
(MSMQ) [10] and IBM’s MQSeries are robust com-
mercial implementations that allow reliable asyn-
chronous communication within guaranteed delivery
constraints.

A notification service (NS) is a form of message-
oriented middleware utilising thePublish-Subscribe

model, acting as an intermediary responsible for
the asynchronous delivery of messages between
publishers and subscribers. (A NS is also re-
ferred to as Notification broker in the recent WS-
Notification specification [6].) Publishers are infor-
mation sources — theypublishinformation about a
given topic. Published information is delivered to
anyone that hassubscribedto that topic. Topics can
be subscribed to by many subscribers, and published
to by many publishers. The notification service takes
the notifications from the publisher and handles their
delivery to the subscribed consumers [7, 8, 12]. As
well as simply passing on the messages, notification
services can also filter and collect the notifications,
allowing consumers to specify that they only want
notifications matching certain criteria, from partic-
ular sources, or that they want to receive all of the
notifications over a period in a single digest.

It is the responsibility of the notification service
to ensure that the notifications are distributed to all
of the subscribers — a publisher does not need to
know who has subscribed to a topic. Notification
services are able to offer persistent, reliable delivery
of notifications, meaning that if a subscribed con-
sumer cannot be reached (for example if they have
disconnected or the network is down), the notifica-
tion service can attempt to deliver the notification
when they can be reached.

The notifications can, for instance, include an-
nouncements of changes in the content of databases
[15], new releases of tools or services, and the ter-
mination of workflow execution. As such, the Grid
community has recognised the essential nature of
notification services such as the Grid Monitoring
Architecture [17], the Grid Notification Framework
[9], the logging interface of the Open Grid Services
Architecture [4] and peer-to-peer high performance
messaging systems like NaradaBrokering [5].

A notification service is also a core architectural
element within the myGrid project [13]. myGrid
(www.mygrid.org.uk) is an e-Science project that
aims to help biologists and bioinformaticians per-
form workflow-basedin silico experiments and also
help them in automating the management of such
workflows through personalisation, notification of
change and publication of experiments. It focusses
increasingly on data-intensive bioinformatics, and
the provision of a distributed environment to support
the in silico experimental process.

A NS can be viewed as a centralized server for
message delivery and data persistence. This imme-
diately introduces a potential scaling problem as the
server gets heavily loaded and becomes unable to
cope. Distributed notification servers overcome this
problem by enabling consumers and publishers to

be connected to different NSs. Message routing is
handled by the NSs to ensure that notifications reach
their destinations.

Potentially, distributed NSs enable the number of
messages being transmitted to be optimised. Con-
sider two NSs, NS1 and NS2. NS1 has one pub-
lisher, and NS2 has two subscribers, both wanting
to subscribe to the same topic. The two available
options are for NS2 to make a subscription for each
connected subscriber and have messages transmitted
twice, or for NS2 to recognise that both subscribers
are subscribed to the same topic and to reuse the
same subscription to NS1 to serve both of them.

To address the distributed NS issue, the myGrid
notification service [13] supportsfederated notifica-
tion topics. At each NS, individual topics have meta-
data attached marking them as part of a federated
notification topic. Information about federated top-
ics and the local member topics is stored in a topic
registry. When a consumer subscribes to a federated
topic, the NS contacts the topic registry to find all
other NSs that have a topic in the federated topic,
and subscribes to these topics. This enables a con-
sumer to receive notifications on a topic at one NS
that were published at another NS.

In a distributed NS, it is still desirable to be able
to request levels of QoS. However, as different lev-
els are requested by many different consumers at the
same NS, it becomes difficult to reuse existing sub-
scriptions. For example, if a consumer has a sub-
scription for notifications about database changes
and has specified that notifications should be sent
five hours apart, a second subscriber requesting no-
tifications every hour is not going to be able to reuse
the subscription. A form of negotiation is required to
allow the subscriber to request appropriate levels of
QoS and the NS to respond with alternative propos-
als that can put existing subscriptions to better use.
To this end, we proposedchained negotiation, which
we describe in the next section.

3 Negotiation

Negotiation is the process by which two or more
parties communicate in order to reach a mutually
acceptable agreement on a particular matter [11].
More specifically, negotiation can be described in
terms ofprotocolsandstrategies[16]: protocols de-
fine the set of rules governing a negotiation such as
the types of participants and valid negotiation states;
and strategies determine how a single participant be-
haves within that protocol, including how it gener-
ates and responds to offers and when to bid.

3.1 Automated Negotiation

There are many situations where a developer would
like to support negotiation over certain parameters
without needing to know details of how to negotiate.
Automated negotiation frameworks make this possi-
ble by defining the particulars of how to negotiate
[2], in terms of protocols and strategies.

Although there is plenty of existing work on auto-
mated negotiation, we are not aware of any address-
ing our concern of chained negotiation. For exam-
ple, in previous work [14], we introduced an auto-
mated negotiation engine based on a bilateral negoti-
ation framework [3] intended for use in a notification
service. Bartoliniet al.[2] developed a framework
for negotiation enabling different types of negotia-
tion to be specified using rules. Jenningset al.[11]
discuss another framework for automated negotia-
tion focussing on rules of negotiation and allowing
different types of negotiation to be carried out in the
same framework.

3.2 Chained Negotiation

Direct negotiation takes place between one or more
consumers and one or more suppliers. The con-
sumers attempt to negotiate a price or set of con-
straints for a product or service they will obtain from
the supplier. Chained negotiationis an extended
form of negotiation where there is one or more inter-
mediary (ormiddleman) between the consumer and
the supplier. Chained negotiation enables middle-
men to provide value-added services on top of an
already provided service, or to make a service avail-
able more efficiently for a number of consumers. A
middleman can exist for the purpose of making a
profit or for increasing the social welfare of the com-
munity. In the situation where the subject of nego-
tiation is information, a middleman is able to redis-
tribute this to multiple consumers without each of
them needing an individual agreement with the in-
formation provider.

Chained negotiation is suitable for use in a dis-
tributed notification service. Consumers subscribe to
their local NS, but the provider may be connected to
another NS. The distributed NS handles sending the
messages between the various NSs, but has trouble
when multiple consumers request different delivery
constraints. For example, if one consumer requests
updates to a database every day, and another con-
sumer requests hourly updates, there is no way the
existing notifications could be reused. Chained ne-
gotiation could be used for each consumer to find
a set of mutually acceptable QoS values that could
make use of subscriptions already in place.

In the rest of this section we give a brief overview

of our previous negotiation engine and then discuss
the extensions made to support chained negotiation.

3.2.1 Bilateral Negotiation Engine

In previous work [14], we introduced a bilateral ne-
gotiation engine, in which negotiations take place
for a negotiation item. In a notification service, this
would be a subscription to notifications on a partic-
ular topic. The attributes of the item are callednego-
tiation terms, which would be various QoS aspects
such as message frequency, message size, granular-
ity or cost of notifications.

The system as a whole is referred to as thenego-
tiation engine. While conceptually it could be re-
garded as a single shared entity, it is split into ane-
gotiation component(NC) at each party in the nego-
tiation to maintain privacy of preferences and util-
ity functions and enabling local information such as
system load to be taken into consideration during the
negotiation.

There are four types of messages used in the nego-
tiation. Proposalsare exchanged to find acceptable
values. When one party receives a proposal they are
prepared to accept, they respond with anacceptmes-
sage. This does not immediately commit them, but
it does mean they have to commit if the other party
replies with aconfirm acceptmessage. Negotiations
can be terminated with aterminatemessage.

Due to space limitations, we omit details of how
proposals are generated and evaluated — see [14] for
details.

Selection of potential negotiation partners is be-
yond the scope of this negotiation model; we assume
there is a fixed chain between a consumer and a sup-
plier. For testing purposes we have used a fixed set
of partners — these will be discovered using a suit-
able service discovery mechanism in future.

3.2.2 Chained Negotiation Extension

In a chained negotiation, there are three types of par-
ticipants. Consumersattempt to obtain products or
services fromsuppliers, but instead of contacting
them directly, they go through amiddlemanthat is
likely to be local to them. Messages are exchanged
sequentially between the involved parties. A typical
sequence of message exchanges is shown in Figure
1, in which a distinction is made between messages
travelling away (upstream) from the consumer (c1)
and towards the consumer (downstream). Messages
travel from one end of the negotiation chain to the
other via the middlemen (m1 andm2). If one of the
middlemen can satisfy the request themselves, they
reply to the incoming request instead of forwarding
the message on.

c1 m1 m2 s1

-
upstream

�
downstream

-
-

-
�

�
�

Figure 1: Message exchange in chained negotiation

One of the requirements we established when
extending our bilateral negotiation model to cover
chained negotiation was that the consumer and sup-
plier should not have to know whether they are par-
ticipating in a chained negotiation or not. This
needed some changes to the model — mainly due
to the time taken for negotiations. In the evaluation
of our previous model, we used a simple interval-
based time model in which the sending of one mes-
sage takes one interval, rather than using the actual
transmission time. If there was no successful pro-
posal found by the time the deadline expired, the ne-
gotiation would fail. Using this system, chained ne-
gotiation could fail very easily because participants
would make their final concessions as the deadline
expires, but there might not be enough time to get
the message to its destination.

To solve this we included an extra field in each
message holding the distance (in number of hops)
away from the consumer (furthest downstream) the
sender of the message is. This is combined with a
new rule stating that messages can only be sent up-
stream if there is enough time for the reply to reach
the consumer:timeremaining ≥ dist+2. This is be-
cause it is impossible to determine how far upstream
a message needs to go — a proposal could be ac-
cepted by the closest middleman, or it could be sent
on further. Because of this uncertainty, the rule is
only for sending to the closest party.

The message types in chained negotiation are un-
changed — the accept message enables all compo-
nents to get to a “prepared to commit” stage without
actually making the commitment. An extra rule has
been introduced to the protocol stating that a nego-
tiation component cannot confirm an accept with a
downstream party without having an existing agree-
ment or a new upstream commitment that can sat-
isfy the downstream commitment. This prevents a
consumer from thinking they have a successful sub-
scription when it might not be possible for it to be
made.

3.2.3 Proximity and Scoring Functions

A key part of chained negotiation is aproximity
function, determining whether one proposal issat-
isfiableby another. Proposalp1 is satisfiable byp2

if each element ofp2 is at least as good as its coun-
terpart inp1 (from the point of view of the sender of
p1), and the negotiation object (the notification sub-
ject in our case) of each proposal is the same.

prox(p1, p2) =

−1 if Subj(p1) 6=Subj(p2)
0 if QoS(p1) =QoS(p2)
< 0 if p1 not satisfiable byp2

≥ 0 if p1 satisfiable byp2

Proximity functions are used to determine appro-
priate existing commitments. Scoring functions are
used to determine the best action to take each time
a message is received by a middleman. An action
could be either to offer a counter-proposal or to ac-
cept a received proposal from either direction. Ac-
tions are generated in two ways: selecting appropri-
ate existing commitments using proximity functions
and taking the last received proposals from each di-
rection and passing them across. In this case the
middleman can adjust values in the proposal, poten-
tially to take a cut if there is a monetary aspect in the
proposal. Using these two methods enables negotia-
tion to take place through the middleman while mak-
ing it possible to reuse existing commitments should
one be close enough to the proposals.

The key to chained negotiation is in having good
scoring functions. The framework has been devel-
oped to allow extra scoring functions to be plugged
in, but in order to evaluate it we used three scoring
functions. The first scoring function uses the prox-
imity function to determine how close an action is
to being acceptable. The second scoring function is
one that favours actions that would lead to an ac-
ceptable state above ones that would not, and also to
favour actions that are matched to an existing com-
mitment, as this would incur less cost1 upstream.
The final scoring function we have used is one that
increasingly favours actions in directions that have
not been used recently. For example, if in two rounds
of messages a downstream action is chosen, an up-
stream action will get a higher score from this func-
tion next time around. Actions are evaluated using a
combination of all of the scoring functions.

If the deadline passes for a negotiation without a
successful proposal being accepted, the negotiation
is terminated. Negotiations can also be explicitly ter-
minated for other reasons, such as no longer requir-
ing the service, system shutdown etc.

1Cost is defined in terms of money or in having to do more
work.

4 Evaluation

Before integrating our negotiation engine with a no-
tification service, we have run a number of simula-
tions to predict the performance of chained negotia-
tions in the context of a notification service.

4.1 Experiment Setup

In our experimental setup, we have divided the nego-
tiation components (NCs) into end NCs and middle
NCs, representing the components and each end of
a negotiation and the middlemen respectively. As
the experimental system does not use any commu-
nication mechanism, the NCs are coupled directly
together using method calls. The negotiation terms
used in the experiments are abstract and represented
by a numeric real value that could in turn represent
any of the QoS terms suggested previously.

The set of varying factors in a negotiation ex-
periment, such as preferences and deadlines, are
grouped together into anenvironment. As there is an
infinitely large space of possible environments, they
are randomly generated in a repeatable manner, so
that experiments may be re-run. In each experiment,
end NCs are played against each other via a number
of middlemen. Average values are then used to get
an indications of real-world results. Tactics generate
values for each term in a proposal. We have only
used time-dependent tactics for the end NCs in this
set of experiments for simplicity — for more details
of tactics and the experiment setup please see [14].

In the experiments, we have compared how var-
ious factors affect three different types of negotia-
tion: Direct negotiation is where the consumer and
supplier are directly connected;Chainednegotia-
tion uses intermediaries to pass on proposals and
attempts to match them to existing commitments
and forwarded negotiation, which is a subset of
chained negotiation where no existing commitments
are reused. Forwarded negotiation represents the
worst case that chained negotiation can take, assum-
ing all requests are sufficiently different that com-
mitments cannot be reused. In chained negotiation,
we also examine the amount of negotiations that are
matched— cases where existing commitments were
reused instead of making new ones.

In our previous evaluation of direct negotiation we
examined both consumer and supplier utility. An
increase in consumer utility normally corresponds
with a decrease in supplier utility. However, in
chained negotiation the supplier may not be in-
volved, as the request could be satisfied by a mid-
dleman. Hence we have concentrated on consumer
utility in these experiments.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 R
at

e

Deadline

Direct
Forwarded

Chained
Matched

Figure 2: Effect of varying deadline on success rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

U
til

ity

Deadline

Direct
Forwarded

Chained

Figure 3: Effect of varying deadline on utility

4.2 Experiments and Results

4.2.1 Varying Deadline

When a negotiation must be completed by a certain
time, a deadline is used to ensure that all agreements
are made by this point. We previously determined
that if a deadline was set too short, a negotiation was
more likely to fail, and would give a lower utility
to each party. We ran experiments through 500 en-
vironments using a single negotiation term to deter-
mine how the negotiation outcome would be affected
as the deadline was varied upto 100 messages.

Figure 2 shows the success rates of different types
of negotiation as the deadline is varied. Forwarded
negotiation consistently performs worse than direct
negotiation. Chained negotiation fares better, show-
ing much better results almost immediately. This is
because the set of environments the tests were run
through was sufficiently large, and most of the ne-
gotiations were matched to existing commitments.
The graph also shows a set of periodic spikes in the
curves. These spikes occur because of the change
to the protocol (described in Section 3.2.2): the con-
sumer cannot determine the distance to its opponent,
as the request could be fulfilled by any middleman

inbetween. Thus it cannot determine the best time
to offer its reservation value, and the negotiation is
less likely to succeed. However, if the final offer is
made when the remaining time allows the message
to reach the supplier and return as the deadline ex-
pires, the negotiation is more likely to succeed with
a better outcome for the consumer.

Figure 3 shows the consumer utility from the same
experiment. This is shown to have similar results to
the success rate — chained negotiation on average
performs very well very quickly. Forwarded negoti-
ation does not perform as well as direct negotiation
with shorter deadlines, but approaches this level as
the deadline becomes sufficiently large. The reason
the utilities decrease slightly as negotiation dead-
lines increase is due to the concession pattern of the
supplier. When there is a short deadline, concessions
are made in larger steps; because the supplier can
determine the last possible moment to make their fi-
nal concession (to a reservation value), the consumer
can get a better deal. With longer deadlines, the sup-
plier concedes in smaller steps and a proposal that
is acceptable to the consumer is often found before
the deadline. earlier, resulting in the proposal being
better with respect to the consumer’s preferences.

To further investigate the effect of the middlemen
in the chained negotiation, we ran the same experi-
ment through different numbers of middlemen. We
focus on forwarded negotiation, because no matter
how many middlemen are present, after an initial
commitment has been made, an offer similar to this
would always be satisfied by the first middleman in
the chain. We ran the same experiment described
above and varied the number of middlemen between
one and five.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

S
uc

ce
ss

 R
at

e

Deadline

1 Middleman
2 Middlemen
3 Middlemen
4 Middlemen

Figure 4: Effect of varying deadline with multiple
middlemen

Figure 4 shows that as the number of middlemen
increases, the success rate drops. It also illustrates an
effect of using chained negotiation: as the number of
middlemen increases, specific values for the dead-

line tend to make negotiation less successful. This
typically occurs when there is only a small overlap
between the ranges of values each party considers
acceptable. The reason for this drop is that while the
supplier can determine when it is allowed to make
its final concession and offer the reservation value,
the consumer cannot because it does not know how
far away the supplier is, so the final concession made
by the consumer does not reach the supplier before
the negotiation deadline. This worst case will hap-
pen when the deadline is2n(m + 1) − 1, wherem
is the number of middlemen andn is an integer.

4.2.2 Varying Negotiation Terms

With a single negotiation term it is easy to match a
new request to an existing commitment. With more
negotiation terms, the negotiation has to get to the
point where both terms are satisfiable by the com-
mitment for it to be reused. We varied the number of
terms the negotiation was run with, and used random
deadlines between 30 and 60 messages.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

S
uc

ce
ss

 R
at

e

Terms

Direct
Forwarded

Chained
Matched

Figure 5: Effect of varying number of terms

Figure 5 shows that as the number of negotiation
terms increases the number of negotiations that can
be matched to existing commitments drops sharply.
It also shows that forwarded negotiation does not
perform as well as direct negotiation, which we ex-
plain with the same reason mentioned previously —
forwarded negotiation performs worse than direct
negotiation for a given deadline due to the extra time
required to send messages.

We also ran the experiment through larger num-
bers of environments. As this produces more op-
portunities for commitments to be reused, the rate
of matched commitments decreased at a slower rate.
Overall, success rate in chained negotiation is badly
affected by increasing the number of negotiation
terms, but only to the level of forwarded negotiation
as this is the worst case for chained negotiation.

4.2.3 Supplier capacity

One of the main objectives of chained negotiation
is to reduce the amount of redundancy required in
sending notifications, thereby increasing the number
of consumers a single publisher can serve. To sim-
ulate this, we have set up an experiment where we
have a number of NSs chained together with a sin-
gle publisher. Consumers are spread evenly between
the NSs, and negotiations are run between them. We
measured the difference in success rate and utilities
compared to all of the consumers negotiating with
the publisher’s NS directly.

Success Rate Utility
Direct 0.680 0.270

Chained 0.986 0.857

Table 1: Success rate & consumer utility with
chained negotiation

Table 1 shows the success rate and consumer util-
ity is higher when using chained negotiation than
negotiating directly. Out of 493 successful negoti-
ations, only 24 of them involved making commit-
ments with the supplier. The rest were satisfied us-
ing existing commitments held by middlemen. Over
time most matched negotiations will be satisfied by
the local middleman, as this will make a correspond-
ing commitment when a match from a more distant
middleman is accepted.

Our preliminary investigation indicates that while
chained negotiation may make initial agreements
harder to reach, especially with multiple middlemen,
this is outweighed by the benefit that emerges when
enough subsequent requests are satisfied using ex-
isting commitments. In the context of a notification
service, this allows a publisher at one NS to send
notifications to more consumers at other NSs, while
allowing consumers to specify aspects of QoS.

5 Conclusion and Future Work

In this paper, we have shown a need for chained ne-
gotiation to support QoS negotiation in a distributed
notification service. We have presented our design
of a chained negotiation engine, and shown that in
some circumstances, better results in terms of nego-
tiation success rates can be achieved by reusing ex-
isting commitments. This also reduces the load on
the upstream components, enabling more consumers
to be serviced. We have determined that chained ne-
gotiation will have a reduced benefit as negotiation
involves more terms. However, we expect a small
number of QoS terms to be used at one time, hence
our system should provide some benefit.

The next stage of this work is to integrate the
chained negotiation engine with the myGrid notifi-
cation service. The myGrid NS does not currently
support negotiation over QoS attributes, so this will
also be added at the same time. Adding QoS ne-
gotiation abilities will enable consumers to request
levels of QoS from the NS, with the NS retaining
some control over what levels of QoS are realistic.
Adding the chained negotiation will enable the NS
to support many more consumers in the system as
a whole without increasing the number of messages
required significantly.

We have also identified a number of changes to the
chained negotiation model which may provide bet-
ter results, such as altering the middleman so it can
negotiate with both sides of a negotiation simultane-
ously instead of sending a message in one direction
and waiting for a reply.

Acknowledgements

This research is funded in part by EPSRC myGrid
project (ref. GR/R67743/01).

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Kea-
hey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web services agreement
specification (ws-agreement), Feburary 2004.

[2] C. Bartolini, C. Preist, and N. R. Jennings. Ar-
chitecting for reuse: A software framework for
automated negotiation. In3rd International
Workshop on Agent-Oriented Software Engi-
neering, pages 87–98, Bologna, Italy, 2002.

[3] P. Faratin, C. Sierra, and N. Jennings. Ne-
gotiation decision functions for autonomous
agents.International Journal of Robotics and
Autonomous Systems, 24(3–4):159–182, 1998.

[4] I. Foster, D. Gannon, and J. Nick. Open grid
services architecure: A roadmap. Technical
report, Open Grid Services Architecture WG,
2002. http://www.ggf.org/ogsa-wg/.

[5] G. Fox and S. Pallickara. The narada event bro-
kering system: Overview and extensions. In
H.R. Arabnia, editor,2002 International Con-
ference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’02),
volume 1, pages 353–359, Las Vegas, Nevada,
2002. CSREA Press.

[6] S. Graham, P. Niblett, D. Chappell, A. Lewis,
N. Nagaratnam, J. Parikh, S. Patil, S. Sam-
darshi, S. Tuecke, W. Vambenepe, and
B. Weihl. Web services notification (ws-
notification), January 2004.

[7] Object Management Group. Event service
specification. www.omg.org, mar 2001.

[8] Object Management Group. Notification ser-
vice specification. www.omg.org, aug 2002.

[9] S. Gullapalli, K. Czajkowski, and C. Kessel-
man. Grid notification framework. Techni-
cal Report GWD-GIS-019-01, Global Grid Fo-
rum, jul 2001.

[10] P. Houston. Building distributed applications
with message queuing middleware – white pa-
per. Technical report, Microsoft Corporation,
1998.

[11] N. Jennings, S. Parsons, C. Sierra, and
P. Faratin. Automated negotiation. In5th Inter-
national Conference on the Practical Applica-
tion of Intelligent Agents and Multi-Agent Sys-
tems, pages 23–30, Manchester, UK, 2000.

[12] Java Message Service API.
http://java.sun.com/products/jms/, 1999.

[13] A. Krishna, V. Tan, R. Lawley, S. Miles, and
L. Moreau. The mygrid notification service.
In Proceedings of the UK OST e-Science sec-
ond All Hands Meeting 2003 (AHM’03), pages
475–482, Nottingham, UK, September 2003.

[14] R. Lawley, M. Luck, K. Decker, T. Payne, and
L. Moreau. Automated negotiation between
publishers and consumers of grid notifications.
Parallel Processing Letters, 13(4):537–548,
December 2003.

[15] T. Oinn. Change events and propaga-
tion in mygrid. Technical report, Eu-
ropean Bioinformatics Institute, 2002.
http://www.ebi.ac.uk/ tmo/changenotification.pdf.

[16] C. Sierra, N. Jennings, P. Noriega, and S. Par-
sons. A framework for argumentation-based
negotiation. InIntelligent Agents IV: 4th Inter-
national Workshop on Agent Theories Archi-
tectures and Languages, volume 1365 ofLNAI,
pages 177–192. Springer, 1997.

[17] B. Tierney, R. Aydt, D. Gunter, W. Smith,
M. Swany, V. Taylor, and R. Wolski. A
grid monitoring architecture. Technical report,
GGF Performance WG, 2002. http://www-
didc.lbl.gov/GGF-PERF/GMA-WG/.

