
Modelling & Simulating Chained Negotiation to Enable Sharing of Notifications

Richard Lawley Michael Luck Luc Moreau

School of Electronics & Computer Science, University of Southampton
E-mail:{ral01r,mml,L.Moreau }@ecs.soton.ac.uk

Abstract

Notification services (NSs) are middleware components
providing asynchronous message delivery between publish-
ers and consumers. Multiple interconnected NSs form a dis-
tributed NS, with each NS routing notifications between
publishers and consumers at different locations, enabling
consumers to share subscriptions, reducing the number of
messages sent. Consumers can specify Quality of Service
(QoS) levels when subscribing to a NS, using negotiation
to find QoS levels acceptable to both parties. However, if
consumers specify sufficiently different QoS levels, notifi-
cations cannot be shared and new subscriptions must be
made. Chained negotiation can be used to negotiate QoS
levels through intermediate NSs, enabling the reuse of ex-
isting subscriptions for additional consumers. In this pa-
per, we present a chained negotiation engine, evaluating its
performance and behaviour, showing that it enables nego-
tiation over QoS while still sharing notifications, and that
it provides better results for a consumer by negotiation di-
rectly with the publisher.

1.. Introduction

A Notification service(NS) is a messaging middleware
component providing asynchronous message delivery be-
tween publishers and consumers: publishers provide infor-
mation that may be filtered and then delivered to subscribed
consumers based on topic specification and delivery para-
meters [5]. However, consumers and publishers of notifica-
tions may have different and conflicting requirements on de-
livery parameters. For example, subscribers may wish to fil-
ter notifications based on a given set of criteria, while pub-
lishers may wish to limit the number of messages sent for
reasons of policy or system load. Such requirements are es-
sentially Quality of Service (QoS) measures.Negotiation
provides a means to resolve the differences between the
preferences of subscribers and publishers [8].

In large-scale deployments, multiple instances of a NS
are hosted at different locations [7] and, consequently, pub-
lishers and consumers may interact with different NS in-
stances — typically their local NS. Such distribution of-

fers better scalability and security. A common configura-
tion pattern consists of several NSs chained between a con-
sumer and a publisher; hence publisher and subscribers can
be separated by several NSs, ormiddlemen, which propa-
gate notifications between publishers and consumers.

Although more complex, distributed notification offers
potential efficiency gains. Instead of sending the same no-
tification messages to multiple consumers subscribed to the
same topic, it is possible to propagate a single message in-
stance between NSs to reduce network traffic,sharing no-
tifications. The difficulty, however, is that if consumers can
negotiate QoS parameters for a subscription, two sets of re-
quirements may be sufficiently different that they preclude
xnotification sharing, and may impose a higher load on the
network of NSs.

Negotiation is typically aimed at directly connected con-
sumers and subscribers, which is unsuitable here. In re-
sponse we designed achained negotiationmodel, where
consumers and publishers no longer communicate directly;
negotiation takes place through middlemen, which pass pro-
posals between publishers and consumers, potentially mod-
ifying them to satisfy their own QoS requirements. Mid-
dlemen also record previous commitments, and attempt to
identify commitments that can be reused to enable an exist-
ing subscription to be shared with a new consumer.

In this paper, we discuss the design and evaluation of
ChaNE, our chained negotiation engine, justifying the need
for chained negotiation and showing the performance and
behaviour of ChaNE.

2.. Notification Services

Notification services are message-oriented middleware
services for asynchronous communications over a network,
for handling remote requests or for delivering information.
Queuing products such as Microsoft’s MSMQ and IBM’s
MQSeries are robust commercial implementations allow-
ing reliable asynchronous communication within guaran-
teed delivery constraints.

Notifications can include announcements of changes in
the content of databases [9], releases of tools or services,
and the termination of workflow execution. The Grid com-
munity has recognised the value of NSs such as the logging

interface of OGSA [4], and myGrid (www.mygrid.org.uk),
where a NS is a core architectural element [7].

As mentioned earlier, larger-scale deployments of a NS
could see multiple interconnected instances of a NS forming
a distributed NS, for scalability and security. If consumers
specify different levels of QoS to a publisher, negotiation is
required to find mutually acceptable QoS levels. Since di-
rect negotiation cannot be used (as the consumer and pub-
lisher may not be directly connected), we proposechained
negotiation, which enables negotiation via the intermediate
NSs. This enables a NS to recognise that a new subscription
request is similar to an existing subscription, and to pro-
pose the existing subscription conditions to the consumer
with the intention of sharing the existing subscription.

3.. Negotiation

Negotiation is the process by which two or more agents
communicate in order to reach a mutually acceptable agree-
ment on a particular matter [6]. Although there is much ex-
isting work on automated negotiation (e.g., [2, 6]), none ad-
dresses our concern of chained negotiation. Previously [8],
we introduced a direct negotiation engine based on a bilat-
eral negotiation framework [3], which we use as the basis
for ChaNE, our Chained Negotiation Engine.

Chained negotiationis an extended form of negotiation,
in which a client initiates a negotiation with amiddleman
for a negotiation item(known asagreement contextin WS-
Agreement [1]), negotiating over variousissues(terms in
WS-Agreement). In a notification service, the negotiation
item is a subscription to notifications on a particular topic,
and the issues represent QoS levels for the subscription,
such as message frequency or cost. If the middleman cannot
provide the item itself, it initiates a negotiation with a sup-
plier, or potentially another middleman, forming a chain be-
tween the client and the supplier. A fixed chain of partners
is assumed in this paper, although a suitable service discov-
ery mechanism would be used in practice.

Middlemen forward proposals between clients and sup-
pliers so that an agreement can be reached, but they can
modify the proposals sent between client and supplier. For
example, when negotiating over a subscription that requires
a payment, the middleman may choose to adjust the prices
in the proposal so that it can make a profit in return for
providing the service. Alternatively, middlemen may exist
solely to benefit the community they serve, taking no profit.

When a chained negotiation terminates successfully, it
can be placed into one of two classes:matchednegotiation,
which satisfies the client’s request by using an existing sub-
scription; andunmatchednegotiations, which require a new
subscription to be made upstream. We defineforwardedne-
gotiation as a variant of chained negotiation where no ex-
isting subscriptions are used. Forwarded negotiation repre-
sents the worst case of chained negotiation, as it provides
no benefit to the client or supplier over direct negotiation.

In ChaNE, messages are exchanged sequentially be-
tween involved agents,upstreamtowards the supplier and
downstreamtowards the client. Messages traverse the chain
from client to supplier, unless a middleman can satisfy the
request, in which case it replies to the incoming request in-
stead of forwarding the message.

Two protocol rules ensure that negotiations terminate
successfully if possible within the specified deadlines:

• Messages must not be sent upstream unless there is
time for the reply to reach the client.This is achieved
by keeping a record of the distance between each
agent and the client and supplier in each negotiation,
recorded in number of hops

• Middlemen cannot initiate commitments downstream
without having an upstream commitment in place to
satisfy the request. This guarantees that a client can-
not make a commitment to an item that is unavailable.

Without the distance fields, a message could be sent up-
stream close enough to the deadline that a reply wouldn’t
reach the client, causing the negotiation to fail. Although
the distance between client and supplier is known, a close
intermediary can still satisfy the negotiation using an exist-
ing commitment.

The significant part of chained negotiation occurs when a
message is received by a middleman, which generates a set
of possibleactions(each including a message to be sent),
and then executes the best action, as shown in Algorithm 1.

Algorithm 1 Processing Propose and Accept messages
msgd =getLastDownstreamMessage()
msgu =getLastUpstreamMessage()

if remainingTime = 0then terminateWithFailure()
if findCommit(msgd) or findUpstreamAccept(msgd) then

actions.add(makeAction(ACCEPT, down,msgd))
if trem ≥ (distD + 2 ∗ distU) then

actions.add(makeAction(PROPOSE, up,msgd))
if msgu != null then

actions.add(makeAction(PROPOSE, down,msgu))
a =selectBestAction(actions)
executeAction(a)

Initially, the latest messages from each side are collected.
The middleman then looks for a commitment that can sat-
isfy the last message from downstream using aproximity
function, which determines whether one proposal is satisfi-
able by another. A proposalp1 is satisfiable byp2 if each is-
sue inp2 is at least as good as the counterpart inp1. When
one proposal isnot satisfiable by another, the proximity
function determines how close they are. If a suitable com-
mitment is found, or if an accept message from upstream
has been received matching the downstream message, an ac-
tion is generated to accept the downstream message. Other-
wise, proposals from upstream are passed downstream and
vice versa. Note that messages will only be sent upstream
if there is time for a reply to reach the client. The middle-
man may modify a proposal at this point (to make a profit)
but this is omitted from the algorithm. Finally, the best ac-
tion is selected and executed.

4.. Evaluation of Chained Negotiation

To evaluate the performance and behaviour of ChaNE,
we performed a number of experiments. In these experi-
ments, clients, suppliers and middlemen are connected di-
rectly (without any web-services-like transport layer), en-
abling the use of a simplified time model in which mes-
sage transmission takes one unit of time. In a real-world
scenario, we expect processing time to be negligible com-
pared to transmission time, so this simplification allows us
to concentrate on the behaviour of the model.

The varying factors in a negotiation are varied in every
experiment, such as the preferences of each party. These are
grouped into repeatableenvironments, through which each
different experiment is run. In the experiments, clients and
suppliers are played against each other via middleman, and
averaged results are used to determine the outcome. More
details of the experiment setup can be found in [8].

In these experiments, we examine the impact of chained
negotiation as different factors are varied: the time avail-
able in which to negotiate; the number of middlemen in a
chain; the number of issues negotiated over, and the amount
of profit taken by a middleman. Optimal utilities are intro-
duced for comparison purposes as the midpoint of the over-
lapping regions of client and supplier preferences.

Variable Negotiation Deadline.When an agreement must
be in place by a certain time, deadlines are specified by
which a negotiation must have completed. In direct negotia-
tion, shorter deadlines lead to worse utility for both agents,
and an increased chance of failure to make a deal. With
chained negotiation, the time taken to send a message from
client to supplier is longer, so the behaviour may change.
To evaluate this, the deadline was varied between 1 and
100 messages, while negotiations were run with and with-
out middlemen.

Figure 1A shows that direct negotiation oscillates over
the optimal values, converging towards the optimal as the
deadline increases. Forwarded negotiation behaves simi-
larly, with a greater period of oscillation. Chained negoti-
ation with a single middleman also oscillates, but converges
towards a significantly higher utility, because once agood
commitment has been found, it is reused for subsequent ne-
gotiations. When multiple middlemen are introduced to the
chain, the oscillation period increases further, along with a
decrease in the minimum utility seen throughout the oscilla-
tions. The oscillations in utility occur in each type of nego-
tiation. To explain, consider direct negotiation, where mes-
sages take one period of time to be sent from client to sup-
plier. Assuming replies are instantaneous, it is possible to
predict which agent sends the last message, which will al-
ways be the reservation value (the largest concession they
will make), assuming the negotiation did not complete ear-
lier. Thus in direct negotiation, an increase to the deadline
of 1 will swap the party making the final concession, which

also means they receive the lowest utility, causing the oscil-
lations in the graph. In chained negotiation, the time taken
to send from client to supplier increases, thereby increas-
ing the period of the oscillations. As longer deadlines make
it more likely that a solution will be foundbeforethe dead-
line, the curves converge as the deadline increases.

During these experiments, the amount of messages ac-
tually exchanged was recorded. On average, direct and for-
warded negotiation exchange the same number of propos-
als, linearly related to the deadline. Once allowed to estab-
lish some commitments, chained negotiation uses signifi-
cantly fewer messages, as matches to existing commitments
are identified quickly. Hence, over time, chained negoti-
ations complete significantly quicker than direct and for-
warded negotiation.

Variable Number of Issues.When using a single issue, it
is easy to match a new negotiation to an existing commit-
ment. As more issues are introduced, the negotiation must
find a proposal where all issues are satisfied by an existing
commitment to avoid having to make a new one. In this ex-
periment, we varies the number of issues in a proposal and
determined its effect on the level of re-used commitments
and utility received. A single middleman was used for for-
warded and chained negotiation.

Figure 1B shows that in chained negotiation, as the
number of issues is increased, the number of negotiations
that can be satisfied using existing commitments decreases.
Since matched negotiations generally have a higher client
utility than unmatched ones, client utility decreases, but
only converging towards the levels of forwarded and di-
rect negotiation. Forwarded and direct negotiation are not
affected by the number of issues if concessions are made on
each issue independently.

Middleman profit rate. In chained negotiation, middle-
men are able to modify proposals before passing them on,
enabling them to add a profit to any cost issue. However, if
middlemen do take a profit, it becomes harder for the client
and supplier to reach an agreement, causing negotiations to
fail. To examine this effect, we varied the profit level on a
single middleman running forwarded negotiations.

Figure 1C shows that as the middleman takes an increas-
ing profit, the utility received by both client and supplier de-
creases. As the profit rate reaches 60%, almost no utility is
received. Not shown on the graph is percentage of nego-
tiations reaching a successful agreement — this decreases
in the same way as utility, reaching 0 at 70% profit. Hence
as the profit level is increased, fewer negotiations reach an
agreement, and those that do, lead to lower client and sup-
plier utility. The graph also indicates the average profit per
negotiation for the middleman. Up to 25%, this increases
steadily, but once above 30%, too many negotiations fail
causing the average profit to fall. By combining the utility

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

C
lie

nt
 U

til
ity

Deadline

A

Direct Negotiation
Forwarded Negotiation

Chained Negotiation (1 Middleman)
Chained Negotiation (4 Middlemen)

Optimal Client Utility
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

M
at

ch
 R

at
e

Number of Issues

B

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100
 0

 1

 2

 3

 4

 5

 6

A
ve

ra
ge

 U
til

ity

A
ve

ra
ge

 P
ro

fit

Profit Rate (%)

C

Client Utility
Supplier Utility

Average Middleman Profit

Figure 1. A) Utility with varying deadlines. B) Matched negotiations and issues. C) Utility and profit.

curves with the profit curve, we can calculate a system util-
ity using a weighted average. This shows that as the profit
is set too high, the utility to the whole system starts to de-
crease. Even for wholly self-interested middlemen, a profit
rate above 40% is counter-productive.

Sharing of Notifications. One of the features of chained
negotiation is that it can reduce the amount of redundancy
required in sending notifications, thereby increasing the
number of consumers a single publisher can serve. To
demonstrate this, we set up a simulation in which 4 NSs
were connected together in a linear chain, with the end NS
connected to a publisher. A large number of consumers
were spread between the NSs, and request subscriptions
with different QoS levels. The publisher and each NS were
restricted to making 500 downstream commitments. We
then compare the number of consumers satisfied against the
case of consumers subscribing directly to the publisher.

When connected directly to the publisher, only 500 con-
sumers can be supported. However, existing subscriptions
satisfy many requests when using the chain of NSs,shar-
ing the notifications between consumers with similar re-
quests. Here, 1911 consumers were satisfied before each
NS reached their commitment limit, at which point the
publisher had only made 31 commitments. Using different
chains where multiple NSs connect to the publisher, a sig-
nificantly higher number of consumers can be supported.

Summary. Compared to direct negotiation, chained nego-
tiation can make it more difficult to make an initial agree-
ment due to longer message transmission times, and utility
that can be further from the optimal than with direct nego-
tiation. However, once a middleman has existing commit-
ments, subsequent negotiations can take advantage, result-
ing in quicker negotiations with higher utility than with di-
rect negotiation. Below, we describe how chained negotia-
tion can be used in a distributed notification service to en-
able a publisher to support more consumers.

5.. Conclusions and Future Work

In this paper, we have shown that chained negotiation can
enable distributed notification services to share notifications

between subscribers, reducing the number of messages that
must be sent. We have presented our design of a chained ne-
gotiation engine, and examined its behaviour as negotiation
conditions are varied. By reusing existing subscriptions and
sharing notifications, chained negotiation can lead to bet-
ter utilities for consumers, and to negotiations being com-
pleted in less time. In addition, the load on a publisher can
be reduced, enabling it to support more consumers. Our ex-
periments have demonstrated that chained negotiation has a
decreasing benefit as more issues are involved in a negoti-
ation, though as we would expect a small number of issues
to be used, chained negotiation should provide a benefit to
a distributed notification service.

Future enhancements to this work include integrating
ChaNE with the myGrid NS, showing a practical use of
chained negotiation; making it WS-Agreement[1] compli-
ant; negotiating in parallel with upstream & downstream
agents; and to use multiple existing subscriptions to satisfy
new requests.

References
[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,

J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web services agree-
ment specification (ws-agreement), Feburary 2004.

[2] C. Bartolini, C. Preist, and N. R. Jennings. Architecting for reuse: A
software framework for automated negotiation. In3rd Workshop on
Agent-Oriented Software Engineering, 2002.

[3] P. Faratin, C. Sierra, and N. Jennings. Negotiation decision functions
for autonomous agents.International Journal of Robotics and Au-
tonomous Systems, 24(3–4):159–182, 1998.

[4] I. Foster, D. Gannon, and J. Nick. Open grid services architecure: A
roadmap. Open Grid Services Architecture WG, 2002.

[5] S. Graham, P. Niblett, D. Chappell, S. Software, A. Lewis, N. Na-
garatnam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snelling,
S. Tuecke, W. Vambenepe, and B. Weihl. Publish-subscribe notifica-
tion for web services. March 2004.

[6] N. Jennings, S. Parsons, C. Sierra, and P. Faratin. Automated negoti-
ation. In5th Conf on Practical Application of Intelligent Agents and
Multi-Agent Systems, pages 23–30, 2000.

[7] A. Krishna, V. Tan, R. Lawley, S. Miles, and L. Moreau. The my-
grid notification service. InProc UK OST e-Science second All Hands
Meeting 2003, pages 475–482, Sept. 2003.

[8] R. Lawley, M. Luck, K. Decker, T. Payne, and L. Moreau. Automated
negotiation between publishers and consumers of grid notifications.
Parallel Processing Letters, 13(4), 2003.

[9] T. Oinn. Change events and propagation in mygrid. Technical report,
European Bioinformatics Institute, 2002.

