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Abstract. Notification Services mediate between information publishers and con-
sumers that wish to subscribe to periodic updates. In many cases, however, there
is a mismatch between the dissemination of these updates and the delivery pref-
erences of the consumer, often in terms of frequency of delivery, quality, etc. In
this paper, we present an automated negotiation engine that identifies mutually
acceptable terms; we study its performance, and discuss its application to a Grid
Notification Service. We also demonstrate how the negotiation engine enables
users to control the Quality of Service levels they require.

1 Introduction

Notification servicesplay an important role within distributed systems, by acting as in-
termediaries responsible for the asynchronous delivery of messages between publishers
and consumers. Publishers (such as information services) provide information which is
then filtered and delivered to subscribed consumers [1–3] based on a specification of
topic and delivery parameters. Notification service features include persistent, reliable
delivery and prioritisation of messages. Notifications may include announcements of
changes in the content of databases [4], new releases of tools or services, and the ter-
mination of workflow execution. Notification services can also be used for replicating
service directory contents [5]. As such, the Grid community has recognised the essential
nature of notification services such as the Grid Monitoring Architecture [6], the Grid
Notification Framework [7], the logging interface of the Open Grid Services Architec-
ture [8] and peer-to-peer high performance messaging systems like NaradaBrokering
[9]. They are also core architectural elements within the MyGrid [10] project.

While the mechanisms for asynchronous notifications are well understood and ro-
bust implementations can be found, some issues still remain open. For example, providers
hosting databases in the bioinformatics domain prefer to control the frequency at which
notifications are published (such as daily digests), and discourage clients from con-
tinually polling for changes. However, clients have their own preferences about the
frequency, format, quality or accuracy of the information being propagated. Similarly,
many services within this domain are hosted by public institutions and are free to the
community, but there are also paying customers expecting a certain quality of service
from providers. The prices charged for notifications will affect the type (e.g. quality and
frequency) of messages sent. As these examples suggest, both providers and consumers



have preferences about the way notifications should be published, yet current notifica-
tion service technologies provide no support for determining a set of parameters that
would be acceptable to both parties.

Automatically finding mutually acceptable notification parameters for a set of terms
(e.g. price, bandwidth, etc) can be viewed as a search for an optimum in a multidimen-
sional space. Acooperativeapproach requires both parties to make valuation functions
and preferences available to a search component. Here, preferences and utility functions
are shared, enabling the optimal values to be found. However, it is not always possible
to share preferences and valuation functions freely — businesses may view preferences
as private, and valuations may be linked to a locally sensed environment. In these situ-
ations, an automatic search is not possible, as an optimum cannot be calculated. These
situations requirecompetitiveapproaches using mechanisms such asnegotiation. Var-
ious approaches exist; in this paper we present abilateral negotiation framework[11]
that is applicable to the context of notification service negotiation.

Our contributions are a practical implementation of an automatic negotiation en-
gine, a study in terms of performance of bilateral negotiation and a study of negotiation
in the specific context of notification services. This paper is organised as follows. Sec-
tion 2 discusses negotiation in general. Section 3 describes the design of our system. In
Section 4 we study the negotiation engine in general and more specifically in Section 5.
We discuss related work in Section 6 and conclude in Section 7.

2 Negotiation

Negotiation is the process by which two or more parties exchange proposals in order
to reach a mutually acceptable agreement on a particular matter. Parties in negotiation
exchangeproposals[12] that are either accepted or rejected. Rejection involves either
turning down the proposal and allowing another to be sent or submitting acounter-
proposal, so that both parties converge towards an agreement.Utility functions(used to
evaluate a proposal) andpreferences(defining an acceptable range of values for each
term) remain private and, because they are stored locally, can be linked to external con-
ditions such as resource levels. For this reason, it is not practical to use cooperative
searching in a Grid environment, where limited system resources need to be allocated.
One solution is Faratin’snegotiation decision functions[11] algorithm, which is a bi-
lateral negotiation model that allows external resource functions to be used to evaluate
proposals and generate counter-proposals.

In Faratin’s algorithm, the methods for generating proposals and counter-proposals
are based ontacticsandstrategies. Tactics are functions that generate the value for a
single negotiation term for inclusion in a proposal, and come in different flavours:time-
dependenttactics use the amount of time remaining in the negotiation thread to concede,
whereasresource-dependenttactics use a resource function to determine how much of
a particular resource is consumed. This resource may be the number of negotiations
currently taking place or the load on the system, and may involve callbacks to monitor
external resources. To combine different tactics during counter-proposal generation,
strategies are used. These modify the weightings given to each tactic, which can be
changed during a negotiation, for example to honour a resource-dependent tactic at the



start of a negotiation and a time-dependent one nearer the deadline. Utility functions
evaluate the utility of a single negotiation term in a proposal. These can be simple linear
functions or more complex callback functions to link the utility to resource conditions.
The utility of a proposal is a weighted summation of the utility of the elements within
the proposal. Proposals become acceptable when the counter-proposal generated has
lower utility than the incoming proposal. Faratin’s algorithm is the basis for the rest of
this paper.

3 Negotiation Engine Description

Our system is intended to allow applications to be programmed without specific knowl-
edge of negotiation protocols. The actual negotiation mechanism is based on the work
of Faratin [11], which allows a host to easily supply external conditions, such as re-
source levels, as inputs into the negotiation process without knowinghowto negotiate.

Negotiations take place between arequesterand arequestee, and we assume that
there is always an item that is the subject of the negotiation. The conditions being ne-
gotiated over are callednegotiation terms, and can be such things as cost or duration.
A conversation between a requester and requestee, where proposals are exchanged, is
called anegotiation thread. Each party has a set ofpreferences, which consist of two
values: anideal valueand areservation value. The ideal value represents the initial
negotiating value (i.e. the value the party would like to get in an ideal world) while
the reservation value is the limiting point of concession. Values beyond the reservation
value are unacceptable, and the negotiation will fail if it is not possible to find a value
that satisfies all preferences. The negotiations in this system work todeadlinesthat are
measured in terms of the number of messages exchanged between the two parties —
the negotiation thread length. We refer to the application containing the negotiation
component as ahostand to the complete system as thenegotiation engine.

Although we conceptually regard the negotiation engine as an entity shared by the
requester and requestee, it has been implemented as negotiation components distributed
between each party. This approach maintains privacy of preferences and utility func-
tions.

A description of the negotiation process is depicted in Figure 1. Before a negotia-
tion starts, both parties initialise their negotiation components with their preferences.
Then, negotiation process proper is initiated with the requester sending a proposal to
the requestee. The communication mechanism is left for the host to implement.

As discussed in the previous section, when a proposal is received by partyp, a
counter-proposal is generated. Usingp’s utility functions, p’s negotiation component
determines if the utility of the counter-proposal is higher than the incoming proposal.
If so, the counter-proposal is sent. This cycle continues until the incoming proposal has
a higher utility, at which point an acceptance message is sent. Both negotiation compo-
nents then give their hosts a successful proposal. Note that acceptance of a proposal is
not acommitment— it is left to the host to commit, allowing negotiations with many
parties.

If the deadline passes before a successful proposal is found, a failure message is
sent to the other party, and the hosts are notified. Negotiations can also be terminated
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Fig. 1.Sequence diagram showing message flow during a negotiation

by means of a failure message for reasons such as a system shutting down or a deal
being made with another party.

4 Experimental Evaluation of Negotiation Engine

To verify the suitability of our negotiation engine for a Grid notification service, we
must check that it scales up predictably to handle more negotiation terms, and longer
negotiations, without any adverse performance. To determine that this component is
suitable for our purposes, we performed a number of experiments.

4.1 Experiment Setup

The set of varying factors such as acceptable ranges and deadlines are grouped into
anenvironment. Running two negotiations in the same environment produces identical
results. As there is an infinitely large space of environments we generated a range of
random environments using the methods from Faratin [11].

For each term, a fixed valueminr was chosen, representing the requester’s reser-
vation value. Random values within predefined ranges were assigned to the parameters
Θr, Θe andΦ, whereΘr represents the size of the acceptable region for the requester
r, Θe represents the size of the acceptable region for requesteee, andΦ represents the
degree of overlap between the acceptable ranges, with 0.99 indicating almost no overlap
and 0 indicating complete overlap. These parameters are illustrated in Figure 2.

We used six tactics — three from the time-dependent and three from the resource-
dependent families as in [11]. Utility functions are linear functions based on the prefer-
ences.

The experiments all had the same basic structure — each tactic was played against
each of the tactics (including itself) in each of the generated environments. This allows
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us to build up some average values demonstrating the sort of results we should expect
from a real-world implementation.

As the design of the system is independent of any communication mechanism we
coupled the negotiation components together directly using method calls. Experiments
measuring time only examined execution time.

4.2 Hypotheses and Results

The experiments described in this section were intended to determine the effects of
varying both the deadline for negotiations and the number of negotiation terms. We
consider the number of messages exchanged in a negotiation to be the primary com-
ponent of time, as the dominant factor for message exchange in a real system is the
transmission time. By contrast, transmission time in our experiments is very low, since
the components are coupled by method calls, but we also measuredexecutiontime at
the end of this section.

Variable Deadline Sometimes, negotiations should be completed within short dead-
lines, but this yields worse results than long deadlines [11]. To examine how the utility
varies with the deadline we varied the deadline between 1 and 100 messages, using a
single negotiation term.

Hypothesis: With short deadlines the utility to both parties is poor. As deadlines
increase, utility also increases, but at a decreasing rate, since a utility of 1 would indi-
cate that no concessions were made, and is unlikely. The percentage of successful deals
made increases as the deadline increases.

Figure 3A shows that the utility (Ur andUe) for both parties is low for short dead-
lines. As the deadline increases, the utility also increases. The average optimal utilities
(Optr andOpte) are plotted on the graph — these are time-independent and therefore
constant. They appear to be asymptotes to the utility curve. Figure 3B shows that the
percentage of successful negotiations has a similar curve, fitting our assumption that
there is a predictable curve that can be used to determine the effect of limiting the dead-
lines of negotiations. This can be used to determine what sort of values should be used
to limit the length of a negotiation thread without trading-off too much utility.

To determine how much of the available time is used, we examined a subset of the
data using negotiations between time-dependent linear tactics. We plotted the utilities
of the outcomes and the time taken for the negotiations for each environment, sorted by
increasing client utility and provider utility. Figure 3C shows that the amount of time
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Fig. 3.A) Utilities, B) Success Rate, C) Utility vs. time used, D) Time vs.Φ

used in a negotiation ranges between 30% and 100% of the available time. There ap-
pears to be an interesting trend where the utility increased as the number of messages
decreased. Our explanation for this is that the negotiations taking less time and giving
greater utility have a better environment to negotiate in. The parameter of the environ-
ment that has the most significance isΦ, controlling the amount of overlap between the
acceptable regions. This is plotted against the number of messages exchanged in Fig-
ure 3D, confirming this theory — negotiation finishes quicker with better negotiation
environments and gives a greater overall utility.

Multiple Negotiation Terms If this negotiation engine were to be deployed in the
notification service, it would not be negotiating over a single negotiation term. There
would be many terms, so we must ensure that the system scales up as the number of
terms increases. In consequence, the negotiations were evaluated with the number of
negotiation terms set at every value between 1 and 25. The experiments used deadlines
of between 30 and 60 messages.

Hypothesis:As the number of negotiation terms increases, the number of messages
exchanged during a negotiation remains constant, as each negotiation term is indepen-
dent and the component concedes on all terms at the same time. Thus the length of the
negotiation is constrained by the most limiting negotiation term. The utility of the out-
come remains constant since the utility is limited by the most constraining negotiation
term. As the number of terms increases, the time taken to perform the negotiations in-
creases linearly, assuming that all the terms are evaluated using the same linear utility
functions and tactics.
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Figure 4A shows that the average utility achieved with a varying number of negoti-
ation terms remains fairly constant, and does not begin to drop with respect to the num-
ber of terms. Similarly, Figure 4B shows that the time appears to be increasing linearly.
While there are a few deviations upwards of the linear trend, these can be explained by
garbage collection being triggered in the execution environment.

Execution Time To confirm that the time taken for negotiation increases linearly with
the number of messages exchanged, we measured the execution time for the negotiation
to complete, averaged over 100 times to reduce inaccuracies. For a given number of
messages exchanged, we recorded the average, minimum and maximum times taken
for negotiations exchanging that quantity of messages. The deadlines in this experiment
were between 30 and 60 messages.

Hypothesis: As the number of messages exchanged between negotiations takes
place, the corresponding increase in real time taken will be linear.

As shown in Figure 5 there is a wide range of results for each number of messages
exchanged. However, the average line is close to the minimum, indicating that few
results are significantly higher than average. (We have explained the higher results as
garbage collection in Java.) Failed negotiations are plotted as 0 messages, although they
always take up to their deadline to complete, because reaching the deadline implies
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failure. Since the time taken for failed negotiations is approximately the same as with
high numbers of messages, we conclude that the time taken is linearly related to the
number of messages exchanged.

5 Evaluation for the Notification Service

We chose a specific case from the bioinformatics field as an example use of the notifica-
tion service. The SWISS-PROT Protein Knowledgebase is a curated protein sequence
database providing a high level of annotation, minimal redundancy and high integra-
tion with other databases [13]. Over the past 14 months it has grown by 20% with
approximately 200 changes per day. As an example, we assume 1000 subscribers are
interested in anything that matches 100 different sequences, and a particular similarity
search takes 1 second and can be run iteratively to refine results. To provide the notifi-
cations, the provider runs the similarity search after data has been added or annotated.
Although subscribers are happy to receive updates every few hours, this would place an
unacceptable load on the provider. For example, daily searches iterated 5 times require
five million searches per day.

We use two negotiation terms for this experiment. Frequency represents the maxi-
mum number of hours between notifications: for the provider, this is between 24 and
168 hours, whereas for the consumer it is between 5 and 120 hours. The second term is
the number of iterations of the search. The provider prefers this to be between 1 and 3,
the client between 1 and 5. The preferences for the provider are kept constant and a ran-
dom variation is introduced into the client preferences to simulate different clients. Ne-
gotiation deadlines are between 30 and 60 messages. After running the negotiations, the
average value for the frequency was 67.6 hours and the number of iterations was 2.31
iterations. This works out as 651,000 searches per day, a reduction of 87%. The aver-
age utilities over the experiments were 0.39 for the consumer and 0.30 for the provider.
Figure 6 shows that the provider utility decreases as the number of computations in-
creases. The curve would have been smoother if we had weighted the utility of each
term differently, as they influence the number of calculations in different ways.

While these figures are based on a hypothetical situation, it demonstrates that the
consumer’s requirements can be satisfied while reducing the number of searches the



provider has to carry out to do so, indicating that a better Quality of Service can be
achieved by using negotiation to establish QoS terms.

6 Related Work

There has been much research in automated negotiation. Bartolini et al. [14] produced a
framework for negotiation allowing different types of negotiations to be specified using
rules. We chose not to use this, as we wanted the two parties to be able to communicate
directly rather than to use a third party to carry out the negotiation. Jennings et al. [15]
give some details on a framework for automated negotiation, which focuses on rules of
negotiation, and allowing many different types of negotiation to be carried out within
the same framework. The RFC1782 [16] describes a simple extension to Trivial File
Transfer Protocol (TFTP) to allow option negotiation prior to the file transfer. Although
the idea is similar in principle, there is no economically sound model of negotiation
used.

A number of examples of subscription services have been identified in the Grid
community, allowing the information to be used for monitoring or rescheduling of al-
locations [17]. The Grid monitoring architecture [6] is a distributed architecture allow-
ing monitoring data to be collected by distributed components. The Grid Notification
Framework [7] allows information about the existence of a grid entity, as well as prop-
erties about its state, to be propagated to other grid entities. NaradaBrokering [9] is a
peer-to-peerevent brokering systemsupporting asynchronous delivery of events to sen-
sors, high end performance computers and handheld devices. The Open Grid Services
architecture [8] has also identified a logging service as an essential component: it also
relies on producer and consumer interfaces. None of these notification services support
negotiation and might benefit from our work.

7 Conclusion and Future Work

This paper has presented our design for a negotiation engine for inclusion in a Notifi-
cation Service. We have presented our reasons for choosing a competitive negotiation
method and shown how our negotiation engine works. We have also shown that the per-
formance of the system is predictable and does not have any adverse effects when used
with many negotiation terms.

Further development of this work is ongoing, and we have identified several areas
we would like to proceed with. In our current system all negotiation terms are indepen-
dent and negotiations concede on all of them. We would like to investigate introducing
dependencies between negotiation terms and the possibilities of trading off one term
against another. Negotiations currently take place between a requester and a notifica-
tion service. We envisage a system where negotiations are chained between consumer,
notification service and provider, and will examine negotiation in this situation.

Finally, it is worth noting that this negotiation component will be deployed in the
Notification Service in a real Grid environment using MyGrid as a testbed.
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