myGrid Notification Service

Ananth Krishna Victor Tan Richard Lawley Simon Miles

Luc Moreau

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ UK
{kahs, hkvt99r, ra0lr, sm, L.Moreau }@ecs.soton.ac.uk

Abstract

The notification service is the part of myGrid that enables asynchronous delivery of messages
between distributed components. It includes features such as topic-based publish-subscribe mes-
saging, push/pull models, asynchronous delivery, persistence, transient and durable subscriptions,
durable topics, negotiation of QoS, hierarchical topic structure and federation of services. Some of
these features are novel in the area of messaging middleware. A cost evaluation of some of these
features indicate that the overhead incurred is justified in terms of compensating benefits gained.

1 Introduction

myGrid is an e-Science project that aims to
help biologists and bioinformaticians to perform
workflow-based in silico experiments and also
help them in automating the management of
such workflows though personalisation, notifica-
tion of change and publication of experiments
[10]. The focus of myGrid is on increasingly
data-intensive bioinformatics and the provision
of a distributed environment that supports the
in silico experimental process. This leads to the
idea of a lab-book environment in which the sci-
entist can construct in silico experiments, find
and adapt others, store partials results in local
data repositories and adopt their own view on
public repositories.

The myGrid experimental in silico process
is expressed as a workflow script, which speci-
fies how services should be composed in order to
realise the experiment desired by the scientist.
Some workflows may take days, if not weeks, to
complete their execution. Users therefore need
to be notified when workflow execution termi-
nates. We prefer not to assume the existence
of user agents able to handle incoming notifi-
cations. Indeed, users are not logged on per-
manently, and we feel that always running user
agents would overload the system unnecessarily.
Instead, we make use of a notification service
able to forward messages to user agents, when
present, or to store messages in their absence.
The use of the notification service is of course
not restricted to the user agent, but may be used
by any services in myGrid. In particular, the no-
tification service is also used to propagate notifi-

cations of changes in databases or in the service
directory [9].

Notification services play an important role
within distributed systems, by acting as interme-
diaries responsible for the asynchronous delivery
of messages between publishers and consumers.
Publishers, such as information services, provide
information which can be filtered and delivered
to subscribed consumers under a given topic or
channel [7]. As such, the Grid community has
recognised the essential nature of notification
services such as the Grid Monitoring Architec-
ture [13], the Grid Notification Framework [6],
the logging interface of the Open Grid Services
Architecture [4] and peer-to-peer high perfor-
mance messaging systems like Narada Brokering
[11]. The notification service is also a core ar-
chitectural element within the myGrid project.

The purpose of this paper is to present the
myGrid notification service. In Section 3, we
discuss its novel features. In Section 4, we de-
scribe its architecture. In Section 5, we evaluate
the performance of some its aspects. Finally,
we discuss related work and conclude the paper.
But beforehand, we introduce the terminology
and define the key concepts of a notification ser-
vice.

2 Terminology

Before we proceed to discuss the features of the
notification service in detail, we provide a def-
inition for the various components within the
notification service.

A messaging model describes the way in which
exchange of messages between two or more com-
municating systems is achieved, particularly with
regards to how messages are defined, published,
consumed, organised and so on. A communica-
tion model concerns the modes of and the pro-
tocols used for communication.

2.1 Notifications, topics, publish-

ers and subscribers

A notification is the message published by any
application or component or object conveying
some event occurrences on some specified re-
sources. The notification also means the process
of announcing some significant events. A topic is
used to identify the kind of message being sent or
received and can be used to group and distribute
messages that are addressed to it. A publisher
(or provider) is any application or component or
object that publishes notifications, while a sub-
scriber (or consumer) is any application or com-
ponent or object that consumes notifications.

2.2 Notification Service

The Notification Service (abbreviated as NS from
this point onwards) is a service that provides
mechanisms for managing the synchronous or
asynchronous transmission of notifications be-
tween publishers and subscribers. In this con-
text, bi-directional communication or two-way
communication means that a consumer is able to
receive incoming messages and submit requests
to the NS; a publisher is able to publish messages
and receive incoming requests from the NS.

2.3 The publish-subscribe model

A subscriber that is interested in receiving mes-
sages relating to a specific topic can register an
interest in that topic with the NS. This registra-
tion of interest represents a subscription and will
have a expiration time representing the duration
of interest. Publishers will publish messages on
a given topic; these messages are retained by the
NS and later propagated to the appropriate sub-
scribers who possess a non-expired subscription.
The use of topics and subscriptions in this way
constitutes the publish-subscribe model, and has
the advantage of decoupling the provider from
the consumer providing for any asynchronous
messaging model.

2.4 Push-pull models

Once a connection has been established, either
between a publisher and a NS, or between a NS
and a consumer, notifications can be sent. There
exists two models for transferring data. In the
push model, the source of notifications decides
when data should be propagated to the notifi-
cation sink, where as in the pull model, the no-
tification sink polls the notification source for
notifications. Push or pull models can be cho-
sen for a given connection independently of other
connections, and may possibly change. For in-
stance, a consumer could pull notifications from
a NS, whereas a provider can push them to the
NS.

2.5 Messaging models

Messaging that requires simultaneous engage-
ment of both publisher and subscriber of the ex-
change is called synchronous messaging. Asyn-
chronous messaging refers to the situation where
the publisher can initiate the communication re-
gardless of whether the subscriber is actually
available when the communication is initiated,
and is the mode employed in the NS.

2.6 Transient and durable subscrip-
tions

A transient subscription exists as long as the
subscriber is running and will not persist or sur-
vive a subscriber crash, while a durable sub-
scription uses persistence to provide reliability
in message delivery. By sending persistent mes-
sages, it can be ensured that even when the no-
tification service crashes, the messages will be
delivered to the subscriber whenever the service
is restarted.

3 Novel technical aspects

In this section, we discuss some of the novel fea-
tures of the myGrid notification service as well
as their underlying motivation.

3.1 Durable topics

Transient subscribers are capable of receiving
messages only when they are active. Durable
subscribers will store messages in a persistent
store even if the subscriber is inactive. Durable
topic subscribers are an extension of durable sub-
scribers. In addition to storing messages in a

persistent store, they also account for messages
published on durable topics.

Durable topics are introduced in order to solve

a potential race condition that might arise in the
publish-subscribe model. A publisher may pub-
lish on a given topic prior to any subscriber ac-
tually having subscribed to that topic. In such
a case, messages published on that topic up to
the point of time when the first subscriber sub-
scribes to that topic is then lost. To prevent
this, the concept of a durable topic is introduced.
This provides the capability of retaining all mes-
sages published on that topic prior to the initial
act of subscription. However the publisher can
still a specify a time-to-live on the messages re-
tained by the durable topic.

3.2 Leases

A lease is the term or duration of a contract
granting use of resources. In the myGrid NS,
leasing adds time to the notion of holding a ref-
erence to a resource, for example in a subscrip-
tion to a topic by a subscriber. This enables the
reference to be reclaimed safely if the lease is
cancelled or expires. Expiry of a lease should be
treated as cancellation of subscription and the
publisher should be notified of such a change if
no more subscribers exist. A lease can be defined
by start and end times. The leasing mechanism
should be able to handle lease checking, renewal
and cancellation; this feature is yet to be imple-
mented in the current NS.

3.3 Distributed notification service

A NS can be viewed as a centralized server for
message delivery and data persistence. This ap-
proach works well for many scenarios though its
drawback is that it tends to load the central
server heavily and that the failure of the server
might cause a failure of the entire service. In our
approach, we emphasize the distributed service
model. The idea is to eliminate a single point of
failure by using multiple hubs. A hub is simply a
notification server that is used primarily to hold
registration and binding information of the no-
tification servers connected to it. It also stores
publisher and subscriber registrations, topic and
message details. If one of the hubs fails, its con-
nected notification servers will be handed over
to another working hub, making it possible to
recover from system failure. To do this, the no-
tification servers store registration and binding
information of all the hubs in the system, and

P-1-3-1

%
(o)

P-1-1-2

P11-1 i @

P-1-3-2

/

S-1-1-1

Figure 1: Simple hub model

will select a new hub (in the event of a failure)
based on rules that ensure that the load is well
balanced.

The basic structure of the model is publisher-
service-subscriber where the service maintains
persistent messages and routes messages in a
smart way. However, it can be further scaled
to more complex topology, forming a scalable
distributed topology that supports communica-
tion to numerous servers collectively providing
the notification service. Figure 1 is a simple
hub model where three notification servers NS-
14 (i=1,2,3) connect to a master server called
Hub-1. NS-1-1, NS-1-2 and NS-1-3 are Hub-1s
clients. Hub-1 and NS-1-i are mutually visible.
For simplicity, a notification server is only al-
lowed to bind to one hub each time.

We assume that Hub-1 will store publisher
and subscriber information including topics. If
subscriber S-1-1-1 wishes to subscribe to topics
published by publisher P-1-3-2, it first submits a
request to the nearest notification server NS-1-1,
who subsequently redirects the request to Hub-1
where P-1-3-2 and its topics can be found. This
model thus is efficient in discovering topics be-
cause, as mentioned, all the information about
publisher and topics are stored in the hubs and
can be equally accessed by connected notifica-
tion servers. There is no need for complex rout-
ing, thus eliminating on a substantial amount of
network traffic.

Hubs like the one shown in Fig.1 can be as-
sembled to create a more complex topology. In
order to maintain data consistency, on events of
registration /un-registration, disconnection, etc,
all hubs will be updated and information will be
replicated among them. Basically, the replica-
tion will take place if there is any change in the
topology. This could be arise in any one of the
following cases: a new notification server joining
in, a notification server being removed, a new
publisher/subscriber joining in, a publisher be-
ing removed, a subscriber being removed, a new
hub joining in or a hub being removed. In addi-

tion, the replication takes place if a new topic is
created, deleted or updated.

3.4 Negotiation over Quality of Ser-
vice (QoS)

Both publisher and the consumer may have dif-
ferent requirements for the delivery of messages
in terms of different criteria. For example, sub-
scribers to a service may wish to filter the no-
tifications they receive based on various factors
such as the topic (event category) of the notifi-
cations, the frequency with which notifications
are received or granularity of the information de-
scribed by the notifications. These essentially
represent different measures of QoS.

A subscriber may prefer, or demand, a par-
ticular parameter of QoS over another. Whether
or how well their demands can be met by a pub-
lisher depends on the quality of service that the
publisher can provide. If demands cannot be
met exactly, the subscriber would then have to
negotiate with the publisher to find the next best
QoS that the publisher can provide. Alterna-
tively, the publisher may be able to exceed the
QoS in several ways which the subscriber may be
unaware of, which could also lead to negotiation.
Automatically finding mutually acceptable noti-
fication parameters for a set of terms (e.g. price,
bandwidth etc) can be viewed as a search for an
optimum in a multidimensional space. The loca-
tion of such parameters is best achieved through
a competitive approach such as negotiation, and
we have developed a bilateral negotiation frame-
work which has been implemented as an auto-
matic negotiation engine [8].

3.5 Topic Management

As mentioned earlier, topics allow the decou-
pling of the publisher from the subscriber and
provide an asynchronous mode of communica-
tion. The NS permits clients to create and delete
topics dynamically. Hierarchical topics are sup-
ported. For example, topics MIRDataChange
and TestDataChange may exist as leaf nodes un-
der a topic called DatabaseNotifications which
may in turn be a subtopic of GenericNotifica-
tions. A message published to leaf topics will
automatically be applicable to super topics, i.e a
message published to MIRDataChange will au-
tomatically be applicable to DatabaseNotifica-
tions and GenericNotifications.

Subscription to a topic entails subscriptions

to all its sub-topics, due to hierarchical organi-
sation of topics. However, filters can be used to
subscribe to a particular subtopic only. There is
an element of access control on topics, i.e topics
should be visible only to certain clients and visi-
bility should be restricted based on user profile.

4 Design and architecture

Figure 2 shows the architecture of NS. In order
for the NS to facilitate communication and in-
tegration of services exposed by myGrid within
and across domains, a subscriber-server-publisher
model is adopted. The server, i.e. notifica-
tion service is located between the subscriber
and publisher and acts as the messaging middle-
ware. In this model, the consumer and publisher
are decoupled and the communication is asyn-
chronous. Communication between subscriber
and publisher is divided into two steps for both
push and pull models. A subscriber can sub-
scribe to a NS and the NS will retain the mes-
sages on behalf of the consumers, which can be
collected later. On the other hand, a publisher
will be able to publish notifications to the NS
and NS decides which subscribers are qualified
to consume the notifications. The NS provides
functionalities like authentication, lease valida-
tion, session management, persistent store for
messages, filtering, topic management, hierar-
chical namespace of topics, etc while driving the
communication.

A client talks to the NS by making a Web
Service call (Figure 2). The front-end is a client
stub layer, making it possible for client compo-
nents to publish and consume notifications. This
is defined in WSDL in order to facilitate com-
munication between a client component and the
NS via SOAP calls. The NS consists of sev-
eral components, most important ones being the
publisher, subscriber and service browser imple-
mentations, which expose all features of the NS
to a client. These components themselves del-
egate responsibilities to complex handlers like
message filter handler, durable topic handler and
QoS handler, which are responsible for message
filtering, durable topic management and QoS
management respectively. Apart from compo-
nents shown in Figure 2, the NS also has Con-
nection Pools to manage database connections,
Resource Managers to manage system and JMS
resources, Lease Manager to manage lease val-
idations, Topic Manager to handle hierarchical
namespace in topics and a Repository Handler

CLIENT
PUBLISHER/SUBSCRIBER
[

ERVICE
PUBLISHER BROWSER

IMPL IMPL

myGrid NOTIFICATION SERVICE

(MGNS)
DURABLE

TOPIC
HANDLER

SUBSCRIBER
IMPL

MESSAGE
FILTER
HANDLER

Qos
HANDLER

TN EETTT)
SIC

JMS
SERVER

Ja|pueH
Aponsodey

< 13|pueH Aioysoday SNOW

MGNS
REPOSITORY

JMsS
REPOSITORY

Figure 2: Architecture of notification service

to handle database read/write operations.

The NS connects to the JMS server via JMS
Connectivity (JMSC). JMSC is a generic API
which permits access to any JMS compliant server
through Java. A generic interface was necessary
to make the NS compliant with any JMS imple-
mentation because the JMS API does not pre-
cisely define the administrative API of a JMS
implementation. A JMSC driver is used to im-
plement the JMSC. The driver is a JMS server
specific component (part of the administrative
API). The use of JMS eliminates the need to ad-
dress many development issues associated with
distributed messaging, such as security, transac-
tions, sessions, message filtering, message persis-
tence, protocols and so on, because these issues
have been handled very well by JMS servers.
The JMS server is configured to work with a
repository to provide message persistence, dura-
bility of consumers, etc to facilitate smooth re-
covery of data in case of a server failure. All JMS
servers guarantee message delivery once and only
once by way of session management and message
acknowledgement.

Publishing a message involves a client who
is registered in the NS to invoke a Web Service
call on one of the publish methods exposed by
the Publisher implementation. A message can
only be published on a valid topic. Clients who
can either be publishers or subscribers can cre-
ate topics dynamically. QoS in the NS allows a
topic to be defined as a durable topic. Messages

published on a durable topic are saved against an
anonymous durable consumer in the JMS server.
The anonymous consumer registers an interest
on the topic to receive all messages published
on the topic. This mechanism will allow sub-
scribers who register at any time with the NS
to receive old messages published on the topic if
they wish to do so. The message published can
be a simple string, array of strings or a complex
XML message. The NS converts the message to
a JMS compliant message.

Subscribing to messages involves a client who
is registered in the NS to invoke a Web Service
call on the Subscriber implementation. A sub-
scriber is allowed to have multiple subscriptions
and QoS of a subscriber allows a subscription to
be transient or durable and the subscription can
either be pull or push. Transient, durable, push
and pull subscriptions have all been defined in
section 2. Pull subscriptions can also request a
QoS with a pull message limit thereby bound-
ing the number of messages for a pull operation.
Durable subscriptions can receive old messages
on a durable topic by requesting the relevant
QoS.

Message filtering is a useful feature supported
by the NS; it is based on properties set in the
header of a message. Properties are set as key-
value pairs and are called message filters. A
publisher sets a message filter to the header of
a message and publishes it on the NS. The NS
internally maps this filter to a JMS filter, which
publishes this message only to qualifying sub-
scribers. It is important to note that subscribers
can set different message filters for different sub-
scriptions based on their specific area of interest.
The filter, which is a set of key-value pairs, will
be first converted to a JMS compliant message
selector and only messages qualifying to these
criteria will be served to the subscriber.

Another useful and important feature sup-
ported in the NS is hierarchical namespace in
topics by way of utilising support offered in cer-
tain JMS implementations. However, it is im-
portant to realise here that the JMS specifica-
tion does not make it mandatory for all JMS
servers to support hierarchical namespace in top-
ics and the NS supports hierarchical namespace
only when JMS implementations themselves sup-
port a hierarchical topic structure. In the cur-
rent release, we only support a static hierar-
chical topic structure. Messages can be pub-
lished only on the leaf node in a hierarchy be-
cause only the leaf node in a hierarchy is a JMS

topic. Advantages of having a hierarchy are that
publishers can publish messages under specific
topics rather than broad based generic topics
and subscribers can use wildcard parameters to
subscribe to more than one topic at the same
time. Disadvantages in the current release are
that a hierarchical depth once defined cannot be
changed, as it is static.

5 Evaluation and results

A series of experiments were conducted in order
to evaluate performance of the notification ser-
vice in conjunction with all features that have
been implemented in the service. Performance
of a messaging middleware can be measured in
several ways. In this section we concentrate on
measuring performance in terms of average time
taken to publish a message. Number of mes-
sages published is gradually increased and the
behaviour of the service is examined based on
the results obtained. Results obtained are also
used to determine any degradation in perfor-
mance caused by implementing features such as
durable topics and message filtering. The ex-
perimental set up involved the service to be de-
ployed as a Web Service using Axis 1.1 inside
Tomcat 4.1.24. OpenJMS-0.7.4 was used as the
JMS server and it was configured to work with
Mysql-2.0.11 as a persistent store. Although
OpenJMS offers a performance of 500 msgs/ sec-
ond for non-persistent messages sent to queues,
there is no mention of performance for messages
published on topics. This demonstrates that the
limiting performance that can be achieved with
OpenJMS is 50-60 msgs/second i.e. OpenJMS
takes approximately 20 milliseconds to publish
a message.

The following graphs represent performance
statistics of the notification service with respect
to experiments carried out in that order. It can
be seen from the results that the average time
taken to publish a message gradually decreases
with an increase in the number of messages and
then remains constant.

Figure 3 shows plots of average time taken
in milliseconds to publish a non-persistent mes-
sage on the NS without a web service call against
publish times with a web service call. It can
be seen from Figure 3 that a web service call is
very expensive and adds a 200-250% overhead
in comparison to average publish times without
a web service call. It can also be seen that av-
erage publish times without a web service call

Overhead of Web Service (non persistent subscriber)

600

Without ws' ——
With WS —x-—

400

Timeinms

100

L L L L L L L L L
0 100 200 300 400 500 600 00 800 900 1000

Number of Messages ’
Figure 3: Publishing non-persistent message

Persistent vs non persistent subscriber
38 T T T T T T

T T
persistent ——
non persistent ---x---

36
34

32

Timeinms

24

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Number of Messages

Figure 4: Publishing persistent message

is 20-25% slower in comparison to publish times
offered by the underlying JMS server, OpenJMS
in our case. This can easily be attributed to pub-
lisher authentication, topic authentication, lease
validation, etc implemented in the NS.

Figure 4 shows plots of average time taken
to publish a message when messages are marked
persistent against publish times for non-persistent
messages. By comparing the plots, we observce
that messages marked persistent have 8-10% longer
publish times than non-persistent messages.

Figure 5 show plots of average time taken
to publish a message on a durable topic against
publish times for persistent messages on a non-
durable topic. By comparing the plots, we can
surmise that persistent messages sent on a durable
topic have 2-3% longer publish times than the
ones sent on a non-durable topic.

Figure 6 show plots of average time taken
to publish a message on a durable topic with a
message filter specified on the message header
against publish times for messages published on
a durable topic without a message filter. We can
conclude that published messages with a mes-

durable topic vs non persistent subscriber

T T T
persistent_durable_topic —+—
fon persistent ---x---

Timeinms

L L L
700 800 900 1000

L L L
0 100 200 300

400 500 600
Number of Messages
Figure 5: Publishing message on a durable topic

filter vs non persistent subscriber

T T
persistent _filter —+—
non persstent ---x---

Timeinms

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Number of Messages

Figure 6: Publishing message with a message
filter

sage filter in their header have 0.3-0.4% longer
publish times than messages published without
any filter.

The above results clearly show that features
implemented in the notification service like JMS
compliance for any JMS implementation, persis-
tent store for messages, durable topic manage-
ment and message filtering are marginally slower
than their counterparts. However, Web Service
calls cause a very large overhead. This can be
largely attributed to expensive and complicated
operations performed by the Axis engine.

6 Conclusion

In this paper we have discussed the myGrid no-
tification service, which can be useful for the
bioinformatics community and notifications in
general. Some aspects like durable topics, nego-
tiation of QoS, hierarchical topic structure, fed-
eration of services and Web Services compliance
are new in distributed computing and messag-
ing middleware. The results obtained show that

most of the supported features in the NS justify
the overhead they incur in terms of performance
degradation as they offer compensating benefits.

Other examples of subscription services have
been identified in the Grid community, for ex-
ample allowing information to be used for mon-
itoring or rescheduling of allocations [12]. The
Grid monitoring architecture [13] is a distributed
architecture allowing monitoring data to be col-
lected by distributed components, collected in a
database optimized for collection of data instead
of querying data, and notifications of resource
usage conditions to be sent to subscribers. The
Grid Notification Framework [6] allows informa-
tion about the existence of a grid entity, as well
as properties about its state, to be propagated
to other grid entities. This focusses on the con-
tent of the messages, rather than the notification
service required. The Open Grid Services archi-
tecture [4] contains a Notification Framework [2]
based upon JMS [7]. This is an interface to JMS
through OGSA, allowing Grid services to use
the JMS for notification services. NaradaBro-
kering [5] is a peer-to-peer event brokering sys-
tem supporting asynchronous delivery of events
to sensors, high end performance computers and
handheld devices. It allows clients to disconnect
and reconnect to a local broker instead of the
one it was previously connected to, and have all
waiting notifications delivered to it.

Future work in on the NS will include in-
troducing a dynamic hierarchical topic structure
and implementing the standalone negotiation en-
gine into the notification service. We are also in-
terested in exploring the implementation of the
federation of services in a P2P manner, which
will make the service more scalable and elim-
inate the single point of failure problem in a
network of services. In our evaluations, we are
also interested in measuring the round-trip time
taken in the notification service as well as the
performance of the service as a Web Service with
evolving technologies such as JAX-RPC.

7 Acknowledgment

This research is funded in part by EPSRC my-
Grid project (reference GR/R67743/01). The
authors would like to acknowledge the myGrid
team (past and present): Matthew Addis, Nedim
Alpdemir, Rich Cawley, Neil Davis, Keith Decker,
David De Roure, Vijay Dialani, Alvaro Fernan-

des, Justin Ferris, Robert Gaizauskas, Kevin Glover,

Carole Goble, Chris Greenhalgh, Mark Green-

wood, Yikun Guo, Peter Li, Xiaojian Liu, Phil
Lord, Michael Luck, Darren Marvin, Karon Mee,
Arijit Mukherjee, Tom Oinn, Juri Papay, Savas
Parastiditis, Norman Paton, Terry Payne, Steve
Pettifer, Milena Radenkovic, Peter Rice, An-
gus Roberts, Alan Robinson, Tom Rodden, Mar-
tin Senger, Nick Sharman, Robert Stevens, Paul
Watson, Anil Wipat, and Chris Wroe. We also
thank our industrial parners: IBM, Sun Microsys-

(8]

[9]

tems, GlaxoSmithKline, AstraZeneca, Merck KgaA,

geneticXchange, Epistemics Ltd, and Network
Inference.

References

[1] Marcos Aguilera, Rob Strom, Daniel Stur-
man, Mark Astley, and Tushar Chandra.
Matching events in a content-based sub-
scription system. In Proceedings of the
18th ACM Symposium on Principles of Dis-
tributed Computing, May 1999.

[2] JaiPaul Antony. Jms notification frame-
work. Technical report, 2003.

[3] Antonio Carzaniga, David S. Rosenblum,
and Alexander L. Wolf. Achieving scalabil-
ity and expressiveness in an internet-scale
event notification service. In Symposium on
Principles of Distributed Computing, pages
219-227, 2000.

[4] Tan Foster, Dennis Gannon, and Jeffrey
Nick. Open grid services architecure: A
roadmap. Technical report, Open Grid Ser-
vices Architecture Working Group, 2002.

http://www.ggf.org/ogsa-wg/.

[5] Geoffrey Fox and Shrideep Pallickara. The
narada event brokering system: Overview
and extensions. In H.R. Arabnia, editor,
2002 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA’02), volume 1, pages
353-359, Las Vegas, Nevada, 2002. CSREA
Press.

[6] S. Gullapalli, K. Czajkowski, and C. Kessel-
man. Grid notification framework. Techni-
cal Report GWD-GIS-019-01, Global Grid
Forum, July 2001.

[7] Java Message Service APL
http://java.sun.com/products/jms/, 1999.

[10]

[12]

Richard Lawley, Keith Decker, Mike Luck,
Terry Payne, and Luc Moreau. Automated
negotiation for grid notification services.
In Ninth International Europar Conference
(EURO-PAR’03), Lecture Notes in Com-
puter Science, Klagenfurt, Austria, August
2003. Springer-Verlag.

Simon Miles, Juri Papay, Vijay Dialani,
Michael Luck, Keith Decker, Terry Payne,
and Luc Moreau. Personalised grid service
discovery. IEE Proc.-Software, 2003.

Luc Moreau, Simon Miles, Carole Goble,
Mark Greenwood, Vijay Dialani, Matthew
Addis, Nedim Alpdemir, Rich Cawley,
David De Roure, Justin Ferris, Rob
Gaizauskas, Kevin Glover, Chris Green-
halgh, Peter Li, Xiaojian Liu, Phillip Lord,
Michael Luck, Darren Marvin, Tom Oinn,
Norman Paton, Stephen Pettifer, Milena V
Radenkovic, Angus Roberts, Alan Robin-
son, Tom Rodden, Martin Senger, Nick
Sharman, Robert Stevens, Brian War-
boys, Anil Wipat, and Chris Wroe. On
the Use of Agents in a Biolnformatics
Grid. In Sangsan Lee, Satoshi Sekguchi,
Satoshi Matsuoka, and Mitsuhisa Sato, ed-
itors, Proceedings of the Third IEEE/ACM
CCGRID’2003 Workshop on Agent Based
Cluster and Grid Computing, pages 653—
661, Tokyo, Japan, May 2003.

Shrideep Pallickara and Geoffrey Fox.
Naradabrokering: A distributed mid-
dleware framework and architecture for
enabling durable peer-to-peer grids. In
ACM/IFIP/USENIX International Mid-
dleware Conference (Middleware-2003),
Rio de Janeiro, Brazil, 2003.

Schwiegelshohn and Yahyapour. At-
tributes for communication between
scheduling instances. Technical report,
GGF, Scheduling Attributes Working
Group, 2001. http://ds.e-technik.uni-
dortmund.de/ yahya/ggf-sched/ WG /sa-
wg.html.

B. Tierney, R. Aydt, D. Gunter, W. Smith,
M. Swany, V. Taylor, and R. Wolski. A
grid monitoring architecture. Technical
report, GGF Performance Working Group,
2002. http://www-didc.lbl.gov/GGF-
PERF/GMA-WG/.

